DAY 2: QUADRATIC FUNCTIONS
Hello my fellow classmates! This is Rojuane and here is what we learned in today's class.
Everytime we graph an equation, a table of values is needed.
Start by picking out common numbers like -1, 0, 1, and 2 for your x valoues then solve for y.
It will be a lot easier to graph, when these common numbers are picked out.
The example given on the board was:
Graphing it looks like:
The general form of y=x2 is y=ax2
The a (coefficient) in the equation can be any value.
The next question on the board was: y=2x2
Once again you need to make a table of values.
Graphing it looks like:
NOTE:
* When the coefficient "a" is greater than 1:
-parabola will stretch vertically
-can compress horizontally
- either way it will look narrower than x2 graph
* Coefficient is greater than 0 but less than 1:
-parabola will stretch horizontally
-it is a wider graph than x2
Eg. y=1/2x2
* If the coefficient is negative, the graph opens downward:
Eg. y=-x2
* Whenever the coefficient is positive the graph opens to the right of the x-axis and the negative coefficient goes the opposite direction:
Eg. right: x=y2 and left: x=-y2
This wraps up today's lesson on Quadratic Functions.
I hope this is helpful and don't forget to do your homework:
Exercise #2 questions: 2-5 AND Exercise #3 questions: 1-3
Next SCRIBE: Mr. Lawrence, I choose you! (poke ball prop) Have fun! =D
Farewell friends, see you in class!
The general form of y=x2 is y=ax2
The a (coefficient) in the equation can be any value.
The next question on the board was: y=2x2
Once again you need to make a table of values.
Graphing it looks like:
NOTE:
* When the coefficient "a" is greater than 1:
-parabola will stretch vertically
-can compress horizontally
- either way it will look narrower than x2 graph
* Coefficient is greater than 0 but less than 1:
-parabola will stretch horizontally
-it is a wider graph than x2
Eg. y=1/2x2
* If the coefficient is negative, the graph opens downward:
Eg. y=-x2
* Whenever the coefficient is positive the graph opens to the right of the x-axis and the negative coefficient goes the opposite direction:
Eg. right: x=y2 and left: x=-y2
This wraps up today's lesson on Quadratic Functions.
I hope this is helpful and don't forget to do your homework:
Exercise #2 questions: 2-5 AND Exercise #3 questions: 1-3
Next SCRIBE: Mr. Lawrence, I choose you! (poke ball prop) Have fun! =D
Farewell friends, see you in class!
Labels: scribe post
0 Comments:
Post a Comment
<< Home